G E U S

Projektet har fået tilskud fra "Grønt Udviklings- og Demonstrations Program, GUDP under Fødevareministeriet".

Third Nordic International Conference on Climate Change Adaptation Copenhagen 25-27 August 2014

Farmes as water manager:

Extreme runoff and adaptation options in rural areas

Netværket

Videncentret for Landbrug Irene Wiborg, iaw@vfl.dk

Bioscience, AU Brian Kronvang, bkr@dmu.dk

Agroøkologi, AU Christen Duus Børgesen, Christen.borgesen@agrsci.dk

GEUS Hans Jørgen Henriksen, hjh@geus.dk

Orbicon Henrik Vest, vest@orbicon.dk

DHI Torsten V. Jacobsen, tvj@dhigroup.com

LMO Eja Lund, ejl@lmo.dk

LRØ Børge Olesen Nielsen, bon@lro.dk

Heden & Fjorden Karen Thomassen, kvt@hflc.dk

Holstebro Kommune Flemming Kofoed, Flemming.Kofoed@holstebro.dk

Horsens Kommune Keld Rasmussen, kra@horsens.dk

Silkeborg Kommune Poul Hald Møller, PoulHald.Moller@silkeborg.dk

Hans Jørgen Henriksen GEUS

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Landmanden

som Vandforvalter

Network project with three case studies

Holstebro Storå

Silkeborg Gudenå

Horsens Bygholm – Hansted å

Can adaptation options in rural areas reduce downstream flooding risks in urban areas and create synergies and win-win?

Controlled Drainage

A dusin of adaptation options in rural areas (technical-natural-cultivation) was discussed in stakeholder workshops

⇒ Reduced flooding risks in Horsens town and possible other synergies geological survey of denmark and greenland

www.geus.dk

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Peak flow faktor ~ evaluation of change in max flow due to change in land use etc in the catchment (winter example)

Analyse: Peak Flow Faktor

- 🛊 T-års hændelse estimeres, Q_T

- PFF ≠ 1: Ændring af maksimumsafstrømning

Workshop in Horsens march 2014

25 invited participants:

- municipalities
- water works
- researchers / network
- Regions
- farmers
- farmers consultants

Purpose: Participatory Integrated assessment and Scenario Analysis (land use model learning)

Bygholm enge N - wetland

G E U S

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

www.geus.dk

GEUS

Effect of adaptation options

peak flow factor = Q_{max} T=10 years scenario / Q_{max} T=10 years

ref

Adaptation option	Hansted å 270045 Hilly clayey soil	Bygholm å Horsens Flat sandy soil
Forest	0,79	0,86
Maiz	0,96	0,93
Drainage	0,96	1,00
Wetlands	0,99	0,99
No paved A	1,00	0,98

Note that scenarios for forest and maiz is for changing all current land uses (crops) into forest or maiz. Controlled drainage only impacting clayey soils, and wetlands is only a limited part of the catchment. Paved areas have limited extension in rural areas (relatively little effect)

www.geus.dk

What is needed for coping with climate change effects? Climate change impacts on hydrologi and extreme river runoff (Q T=10 year, Q T=100 year etc.)

Extreme value methodology:

POT/GP2 distribution function most optimal for max Q simulated with DK model with L-moment

WATER RESOURCES RESEARCH, VOL. 33, NO. 4, PAGES 771-781, APRIL 1997

Generalized least squares and empirical Bayes estimation in regional partial duration series index-flood modeling

Henrik Madsen¹ and Dan Rosbjerg Department of Hydrodynamics and Water Resources, Technical University of Denmark, Lyngby, Denmark

Uncertainty of climate factor

Climate factor estimate:

$$CF = \frac{x_{T,I}}{x_{T,I}}$$

where $x_{T,F}$ and $x_{T,C}$ are estimated $T_{|}$ -year events for future and control, respectively.

Variance of climate factor estimate:

$$Var\{CF\} = CF^{2} \left(\frac{Var\{x_{T,C}\}}{x_{T,C}^{2}} + \frac{Var\{x_{T,F}\}}{x_{T,F}^{2}} \right)$$

where $Var{x_{T,F}}$ and $Var{x_{T,C}}$ are variances of the *T*-year events for future and control, respectively

Rare winter events - Climate factor 2021-2050 versus 1961-1990

Comparison of effects of rural measuers compared to climate change impacts

Peak flow factor Qmax T=10 years	Hansted å 270045	Bygholm å Horsens	Midtjylland
Adaptation measure	Hilly clayey soil	Flat sandy soil	
Forest	0,79	0,86	
Maiz	0,96	0,93	
Drainage	0,96	1,00	
Climate factor Qmax T=10 years	1,13 (0,82 – 1,45)	1,12 (0,86 – 1,37)	1,21 (1,11 – 1,32)
Climate factor Qmax T=100 years	1,23 (0,80 – 1,66)	1,17 (0,87 – 1,46)	1,19 (1,08 – 1,29)

Conclusions

Most efficient measures (farmers)

- Land-use change
 - Forest (conifers, energy crops?)
 - Maiz
 - Controlled drainage
 - Wetlands (if large area/or many small)
 - Important also to evaluate synergy effects on biodiversity, CO2, nutrients etc.

Business models (Private sector/farmers <> Municipality):

- Tendering auctions/rounds or
- Compensational payment (institutional challenges/EU)